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Given a normed linear space X, a family1/" of nonempty closed subsets of X, and
a family :F of nonempty closed and bounded subsets of X, we identify three proper
ties (R j ), (Rz), and (R3) of the triplets (X, V, :F) where V E 1/", and two properties
(R4 ), (R4 ) of the triplets (X,1/", :F), with a view to studying existence of restricted
centers and stability of the restricted center map. This leads to a sharpening of
many known results as well as to some new results for existence of restricted
centers, and it also enables us to obtain some new continuity results for restricted
center maps. © 1991 Academic Press, Inc.

INTRODUCTION

Let X be a normed linear space and Va nonempty subset of X. For a
bounded subset F of X, let

r(F;x) :=sup{llx- YII:YEF}

denote the radius of the smallest closed ball centered at x covering F and
let

radv(F) :=inf{r(F; X):XE V},

Centv(F) := {voE V: r(F; vo) == rad v(F)}.

The number radv(F) is called the Chebyshev radius of F in V and an
element Vo E Cent v(F) is called a restricted center (or a best simultaneous
approximation) of F in V. When F is a singleton {x}, X E X, then rad v(F)
is the distance of x from V, denoted by dist(x; F), and Centv(F) is the set

Pv(x):= {VoE V:llx-voll =dist(x; V)}

* A part of the work of the first author was carried out while he was visiting California
State University, Los Angeles.
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of best approximations to x in V. It is obvious that

r(F, x) = r(F; x) = r(co F, x),
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where co stands for the closed convex hull. Therefore the assumption on
the bounded set F to be closed (and (or) convex) is not an additional
restriction. The study of restricted centers, initiated by Garkavi [9J, has
attracted much attention. Questions concerning the existence, uniqueness,
and stability of restricted centers have been analyzed by many authors (cf.,
e.g., [10, 11,23,24,2, 15-17, 3-5, 21]). For a recent survey of results in
this direction, we refer the reader to [6] (cf. also the earlier expository
article [8]).

In this paper, for the most part, we deal with restricted centers of sets of
continuous (and (or) bounded) vector-valued functions defined on a
topological space T. We identify three properties (R j), (R2 ), and (R 3 ) of
the triplets (X, V, ff), where V is a nonempty closed subset of a normed
linear space X and ff is a given family of nonempty closed and bounded
subsets of X, with a view to study nonemptiness of Centv(F) and con
tinuity of the Centv-map:F---+Centv(F) for FE.? Property (Rd is a
strengthened version of the 1~-ball property of [25], property (R2)
strengthens both property (Pd of [17] and property (A) of [20], and
property (R 3 ) is a strengthened form of property (P2 ) of [17]. We also
identify two strengthened versions of property (R 2 ) which we call proper
ties (R4 ) and (R4 ), respectively, of the triplet (X, 1/, ff), where X, ff are
as before and 1/ is a given family of nonempty closed subsets of X.
Property (R4 ) yields equi-Hausdorff continuity and property (R 4 ) yields
equi-upper Hausdorff semicontinuity of the family {Cent v: V E 1/"} of
restricted center maps. We explore various examples of triplets satisfying
properties (R j )-(R4 ) and analyze the interconnections between these and
the other known related properties [25, 15, 17, 4, 20]. This leads us
to obtain extensions of several known proximinality results (e.g., [7,
Corollary 3.1; 20, Theorem 4; 13, Theorem 2.1 J) to restricted centers. Some
new continuity results, as well as some new results on continuous selection
of restricted center maps are also obtained.

1. PRELIMINARIES AND NOTATION

In the sequel, X will be a normed linear space over the field X = f?ll or
'fl and ewill denote the origin of X. The open (resp. closed) ball of center
Xo and radius r >°will be denoted by B(xo ; r) (resp. B(xo ; r)). CL(X)
(resp. CB(X), resp. K(X)) will denote the class of nonempty closed (resp.
nonempty closed and bounded, resp. nonempty compact) subsets of X.
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CC(X) will denote the class of nonempty closed and convex subsets of X.
For sets A, B in CL(X), let h(A, B) := sup{dist(a; B) : a E A} denote
the Hausdorff hemidistance [12, p. 38] between A and B and let
H(A, B) :=max{h(A, B), h(B, A)} denote the Hausdorff distance between
A and B. Hausdorff distance so defined yields an infinite valued metric on
CL(X). Restricted to any subfamily:? of CB(X), it defines a finite valued
metric. We denote by r H the topology of Hausdorff metric on :? If T is
a topological space, then a set-valued map r: T ~ CL(X) is said to be
upper Hausdorff semicontinuous, abbreviated u.H.s.c. (resp. lower Hausdorff
semicontinuous, abbreviated I.H.s.c.) if for every to E T and every I> > 0,
there is a neighbourhood N of to such that h(r(t), r(to)) < I> (resp.
h(r(to), r(t))<I» for each tEN. r is said to be Hausdorff continuous,
abbreviated H-continuous, if it is both u.H.s.c. and I.H.s.c. Recall that r is
said to be upper semicontinuous, abbreviated U.S.c. (resp. lower semicon
tinuous, abbreviated l.s.c.) if r- 1(t) := {t E T : r(t) n A =1= rjJ} is closed (resp.
open) for each closed (resp. open) subset A of X. If r is both u.s.c. and
l.s.c., then it is said to be continuous. It is well known (cf., e.g., [12,
Theorem 7.1.11]), that if r is u.s.c., then it is u.H.s.c. and that if r
is I.H.s.c., then it is l.s.c. Moreover, if r maps T into K(X), then r is
continuous if and only if it is H-continuous.

Given a set Fin CB(X) and r > 0, let

Sr(F):= {XEX: r(F; x) =:::;r} = n {B(y; r): YEF}

denote the sublevel set of the function r(F, . ) at height r. If V E CL(X) and
:? c CB(X), then V is said to satisfy the restricted center property
(abbreviated r.c.p.) for:? if Centv(F) =1= rjJ, for each FE:? We say that
X admits centers for:? if Centx(F) =1= rjJ for each FE:? If V satisfies
r.c.p. for :?, then a map c::? ---+ V such that c(F) E Centv(F) (resp.
c(F)ECent(F) :=Centx(F)), for each FE:?, is called a restricted center
selection for V (resp. a center selection for X) defined on :? If T is an
arbitrary set (resp. a topological space) and U is a Banach space, then we
denote by loo(T, U) (resp. rt'(T, U)) the space of bounded (resp. con
tinuous) U-valued functions on T. We equip loo(T, U) with the sup norm
and denote by rt'b(T, U) the space rt'(T, U) n loo(T, U) equipped with the
restricted norm in case T is a topological space. We record the following
elementary fact useful in the sequel as a lemma.

LEMMA 1.1. Let X = rt'b(T, U), FE K(X), and for each t E T let F(t)
denote the set {J(t) : f E F}; then the set-valued function t ~ F(t) of T into
K( U) is H-continuous, and hence also continuous.

Proof This follows immediately from the equicontinuity of F. I
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A subset V of 'Cb(T, U) is said to be a 'Cb(T, :It )-submodule of 'Cb(T, U)
if rxf + f3g E V whenever f, g are in V and rx, f3 are in 'Cb(T, :It). A subset V
of 100 (T, U) is said to be a convex 100 (T, [0, 1] )-submodule if
rxf + (1- rx) gE V whenever f, g are in V and rx E loo(T, [0,1]). In case Tis
compact Hausdorff, V is said to be a Weierstrass-Stone subspace of
'Cb(T, U) (abbreviated W-S subspace) if there is a compact Hausdorff space
S and a continuous surjection n: T --+ S such that V = {g 0 n : g E 'Cb ( s, U)}.

Recall [1] that a linear projection P in a Banach space X is called an
L-projection if Ilxll = IIPxl1 + IIx - Pxll for all x E X. A linear subspace L of
X is called an L-summand if it is the range of an L-projection in X and a
closed subspace V of X is called an M-ideal if its annihilator M 1- is an
L-summand in X*. Last, recall that a (real) Banach space X is said to
be a Lindenstrauss space if X* is isometric to L 1(p) for some measure p.
Lindenstrauss [14] has shown that this is equivalent to the property that
every collection of pairwise intersecting closed balls in X whose centers
form a compact set, has nonempty intersection.

2. PROPERTY (Rd

We need to recall here the notion of 1!-ball property introduced by Yost
[25]. A closed subspace V of a Banach space X is said to satisfy the 1!-ball
property in X if V n B(x; rl ) n B(y; r2) =1= ¢J, whenever x E V, Y E X, '1> 0,
and r2>0 are such that VnB(y; r2)=I=¢J and Ilx- yll <rl +r2. This
property ensures proximinality of V and existence of a selection for the
metric projection P v( '), which is continuous, homogeneous, and quasi
additive [25]. For studying restricted centers, it is apparently more useful
to introduce the following property which is a strengthened version of the
1!-ball property. Although indirectly used in the proof of Proposition 3 of
[17J, it does not appear to have been well-studied elsewhere in the
literature.

DEFINITION 2.1. Given V E CL(X) and :F c CB(X), the triplet
(X, V,:F) is said to satisfy property (Rd if VnB(x;r1)nSrz(F)=I=¢J,
whenever x E V, FE:F, rl > 0, and r2>°are such that V n Sr,(F) =1= <p and
r(F; x) < r l + r 2 • Clearly if V is a closed subspace of X, :F 4contains all
singletons in X and (X, V, :F) satisfies property (R 1 ), then V satisfies the
1!-ball property in X.

THEOREM 2.2. Suppose X is a Banach space, V E CL(X), and
:F c CB(X). If (X, V,:F) satisfies property (R"I), then V satisfies r.c.p.
for :F.
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Proof Let F in :IF be given. We inductively construct a sequence Vn in
V satisfying

(1)

and

(2)

Indeed, suppose Vn E V is given satisfying (2). Then

V n Sradv(F) + 2-n-1(F) =I- <p

and r(F; Vn) < radv(F) + 2 -n-1 + 2 -no By (Rd

V n B(Vn;2 -n) n Sradv(F) + 2-n-1(F) =I- <p.

Pick up V n + 1 from the last set. Then vn + 1 satisfies (1) and (2), and the
induction is complete. By (1), {Vn} is Cauchy and if v=limnvn, then
VE V and by (2), vECentv(F). Thus Centv(F)=I-.p and V satisfies r.c.p.
for:IF. I

In the following propositions we consider examples of triplets (X, V, :IF)
satisfying property (Rd.

PROPOSITION 2.3. If V is an M-ideal in a Lindenstrauss space X, then the
triplet (X, V, K(X)) satisfies property (R 1 ).

Proof Suppose x E X, FE K(X), r1> 0, and r2>° be such that
V n Sr2(F) =I-.p and r(F; x) < r1+ r2. Then B(x; rd n B(y; r2) =I-.p for each
yEFand since FEK(X), by a theorem of Lindenstrauss [8, p. 62] we have
B(x; r1) n m{B(y; r2) : Y E F}) =I-.p.

Since V n B(x; r1) =I-.p and V n B(y; r2) =I- <p for each y EF by [16,
Lemma 2.1], VnB(x;rd nSr2(F)=I-.p. I

PROPOSITION 2.4. If T is a compact Hausdorff space, U is a
Lindenstrauss space, X = ~(T, U), and V is a W-S subspace of X, then
(X, V, K(X)) satisfies property (Rd.

Proof There are a compact Hausdorff space S and a continuous surjec
tion n: T--. S such that V= {gon: gE~(S, U)}. Suppose gonE V,
FE K(X), r1> 0, and r2>°are such that V n m{B(f; r2) : f EF}) =I- <p and
r(F; go n) < r1+ r2' Define ([J: S --. cqU) with values
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By Lemma 1.1, the set-valued map t -'> F(t) of T into K( U) is u.s.c. and
therefore, by [12, Theorem 7.4.2J the set {f(t) :fEF, tEn~1(s)} is in
K(U). By the theorem of Lindenstrauss [8, p. 62J, we have €p(s)#r/J for
each S E S. We show that €P is l.s.c. To this end suppose €p(so) nO # r/J for
a point So E S and an open set 0 in U. Pick a point u in this set. Then
Ilu-g(so)ll:;;:;rt> f(n- 1(so))cB(u;r2) for each fEF and B(u,l::)cO
for some e > o. It is easily seen that the set-valued map s -'> F(n ~ )
of S into K( U) is u.s.c. Hence there is a neighbourhood N 1 of So

such that F(n ~ 1(s» c B(u; r2 + e) for every SEN1 and by continuity of g,
there is a neighbourhood N 2 of So such that Ilg(s)-g(so)ll <I:: for every
sEN2. Taking N=N1nN2, we have B(u;e)nB(f(t);r2)#r/J and
B(u;e)nB(g(s);rd#r/J for eachfEF, tEn~1(s) and SEN. Again by the
same theorem of Lindenstrauss used before, we have €p(s) n B(u; e) # if; for
each sEN, which proves that €P is l.s.c. By Michael's selection theorem [18,
Theorem 3.2"J, €P has a continuous selection h. It is easily verified that
h o nEVnB(gon;rd nSr2(F). I

PROPOSITION 2.5. Let T, S, U, X, and n be as in the previous proposition.
If E is a closed subset of Sand V= {gon: gE~(S, U) and gIE=O}, then
(X, V, K(X)) satisfies property (Rd.

Proof Let €P be as in the proof of the previous proposition. Suppose
gonE V, FEK(X), r1>0, and r2>0 are such that VnSr/F)#r/J and
r(F; gon)<r1+r2. Pick up an element gonE VnSr2(F), then Ilf(t)ll:;;:;
Ilf(t)-g(n(t))11 :;;:;r2 for each tEn~1(E) and each fEE. This shows that
eE €p(s) for each SEE. Define

{
¢J(S ),

€po(S):= {e},
s¢E

SEE.

Then €Po is l.s.c. and the existence of a continuous selection for f[Jo shows
that VnB(gon;r1)nSr2 (F)#¢J. I

COROLLARY 2.6. If T is a compact Hausdorff space, X = ~(T, .?,f), and V
is a closed subalgebra of X, then (X, V, K(X)) satisfies property (R 1 ).

Proof This follows from the Stone-Weierstrass theorem and Proposi
tion 2.4 if V vanishes at no point of T and from Proposition 2.5 if V
vanishes at some point of T. I

COROLLARY 2.7. If T is a compact Hausdorff space, U is a Lindenstrauss
space, X = ~(T, U), E is a closed subset of T, and V = {g E ~(T, U) :
glE= e}, then (X, V, K(X)) satisfies property (Rd·
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PROPOSITION 2.8. If T is a paracompact Hausdorff space, U is
a Lindenstrauss space, V is an M-ideal in U, and X = loo(T, U), then
(X, rtJb(T, V), K(X» satisfies property (R1 ).

Proof Suppose g E rtJb(T, V), FE K(X), r1 > 0, and r2 >°are such that

and

Define t:P: T --+ CC( V) with values

t:P(t) := V n B(g(t); rd n ( n{B(f(t); r2) : f E F} ).

By Proposition 2.3, (U, V, K( U» satisfies property (Rd and since
F(t) E K( U), we have t:P(t) # ¢J for each t E T. We assert that t:P is
1.s.c. Indeed, suppose t:P(to) n B(u; rx) # ¢J for some u E V. Pick up
v E ¢J(to) n B(u; rx) and [3 >°such that llv - ull < [3 < rx. Let B= rx - [3. Then
We have Ilv - g(to)ll ~ r1 and F(to) c B(v; r2). By upper semicontinuity of
t --+ F(t), there is a neighbourhood N 1 of to such that F(t) c B(v; r2+ B) for
every t E N 1 and by continuity of g, there is a neighbourhood N2 of to
such that Ilg(t)-g(to)ll<B for all tEN2. Let N=N1 nN2. Then
B(v;B)nJj(f(t);rJ#¢J and B(v;B)nB(g(t);rd#¢J for each fEF and
tEN. Since U is a Lindenstrauss space, F( t) u {g( t) } E K( U) and V is an
M-ideal, we have by [16, Lemma 2.1J t:P(t)nB(v;B)#f/J for each tEN.
Therefore, t:P( t) n B(u; rx) # ¢J for each tEN and this proves that t:P is 1.s.c.
By Michael's selection theorem, t:P has a continuous selection h. Clearly
hE rtJb(T, V) n B(g; rd n Sr2(F). I

PROPOSITION 2.9. If T is an arbitrary set, X = loo(T, ~), and V is a
closed linear subspace of X with the property that for each g E V and k > 0,
the function (g 1\ k) v (-k) belongs to V, then (X, V, CB(X» satisfies
property (Rd.

Proof By a translation, it would suffice to prove that if FE CB(X) and
r l > °and r2>°are such that V n Sr2(F) # ¢J and r(F; 8) < rl + r2, then
V n B(8; rd n Sr2(F) # ¢J. Pick gE V n Sr2(F) and let h = (g 1\ rd v (-rd.
Then hEVnB(8;rd. We show that r(F;h)~r2' Let tET be given. If
1g(t)1 ~ r1' then h(t) =g(t) and therefore If(t) - h(t)1 = If(t) - g(t)1 ~
Ilf - gil ~ r2, for each f E F. If g(t) > r1 , then h(t) = r1 and we have

-r2~f(t) - g(t) <f(t) - r1 = f(t) - h(t) < r2, for each f E F.

Last, if g(t)< -r1' then h(t)= -r1 , and in this case we have

-r2 = - (rl + r2) + r1 <f(t) + r1 = f(t) - h(t) <f(t) - g(t) ~ Ilf - gil ~ r2,
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for each f E F. Thus If(t) - h(t)1 :S; r2 for each t E T and f E F, which gives
r(F;h):S;r2 · I

COROLLARY 2.10. If T is a compact Hausdorff space, X = ~(T, 9l), and
V is a closed subalgebra of X containing nonzero constants, then
(X, V, CB(X)) satisfies property (R j ).

Proof This follows from the well known fact that any closed sub
algebra of ~(T, 9l) is a sublattice. Indeed, if V contains nonzero constants,
then the condition of the preceding proposition is satisfied. I

Given a family "fI c CL(X) and a family % c CB(X), where X is a
normed space, we introduce properties (R 2 ), (R 3 ), (R4 ), and CR4 ) given by
the following definitions.

DEFINITION 3.1. Let V E "fI be given. The triplet (X, V, %) is said to
satisfy property (R 2 ) if, for every £>°and r > 0, there exists <5 > Osuch
that given FE % with radv(F):S; rand u E V such that r(F; u) < r + d,
there exists VEV such that Ilu-vll<£ and r(F;v):S;r, or equivalentiy,
dist(u; SAF) n V) < £, whenever FE % with radv(F):S; rand
UE(nYEF{B(y;r+<5)})n v.

DEFINITION 3.2. Given V E "fI, the triplet (X, V, %) is said to satisfy
property (R 3 ) if given £> 0, there exists <5 >°such that for every FE %,
every r ~ radv(F) and each u E V satisfying r(F; u) < r + <5, there exists v E V
such that Ilu - vii < £ and r(F; v):s; r.

DEFINITION 3.3. The triplet (X, "fI, %) is said to satisfy property (R4 ) if
given £> 0, there exists <5 >° such that for every V E "fI, FE %, and
r ~ rad v(F), for each u E V satisfying r(F; u) < r + <5, there exists v E V such
that Ilu-vll<£ and r(F;v):s;r. The triplet (X,'r,%) is said to satisfy
property (R4 ) if, given £ > °and r > 0, there exists <5 > °such that for every
V E "fI and FE % such that r ~ rad v (F) and each u E V satisfying
r(F;u)<r+<5, dist(u;SAF)n V)<£.

Clearly, if (X, "fI, %) satisfies property (R 4 ), then it satisfies property
(R4 ) and (X, V, %) satisfies (R 3 ) for every V E 'r.

We remark that property (R2 ) is stronger than property (P j ) of Mach
[17], which is obtained by taking r=radv(F) for each FE% in the state
ment of (R 2 ). Likewise, property (R 3 ) is stronger than property (P2 ) of
[17], which is obtained by taking r=radv(F) for each FE% in the state-

640/66/2-5
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ment of (R 2 ). We also observe that (R2 ) reduces to property (A) (resp. is
stronger than property (A)) of [20] when :F consists of all singletons
(resp. contains all singletons) in X. It is clear that if the triplet (X, V,:F)
satisfies (R2 ), then V satisfies r.c.p. for :F.

The next four propositions give examples of triplets (X, V,:F) satisfying
property (R2). Recall [22, p. 368] that a set V E CL(X) is said to be
boundedly compact if V n B(x; r) is compact for every x E X and r > O.

PROPOSITION 3.4. Suppose V is a boundedly compact subset of X; then
(X, V, CB(X)) satisfies property (R2 ).

Proof Assume the contrary. Then there are numbers e> 0 and r > 0
and a set FE:F with rad v(F):::; r, such that for each n, there exists
Vn E V such that r(F; Vn) < r + lin and dist(vn; Sr(F) n V) ~ e. Clearly
{Vn} cSr+ 1(F)cB(e;diameter(F)+r+ l)n V, which is compact. There
fore {vn} has a convergent subsequence {v nk } converging to Vo in V. Then
Vo E Sr(F) n V; but dist(vo; Sr(F) n V) ~ 8, which is a contradiction. I

PROPOSITION 3.5. If X = 11 and V is a w*-closed convex subset of X, then
(X, V, CB(X)) satisfies property (R 2 ).

Proof Assume the contrary. Then there are numbers e > 0 and r > 0
and a set FE:F with radv(F):::; r, such that for each n, there exists Vn E V
such that r(F; Vn) < r + lin and dist(Vn; Sr(F) n V) ~ e. The proof of
Proposition 2 of [17] is now easily seen to work here with radv(F)
replaced by r. I

Recall [6] that X is said to be quasi uniformly convex with respect to a
set V E CC(X) if for every 0 < e< 1 there exists 0 < 6= 6(e):::; e such that
given u, v in V, there exists UoE V with Ilu - uoll :::; 8 and such that
B(u; 1) n B(v; 1-6) c B(uo; 1- 6). In this case, we say that the pair (X, V)
satisfies property (QUC). If V is a closed linear subspace, then by a trans
lation, we may assume Vo= e in the above definition. We also recall
(cf. [6]) that in case V is a closed linear subspace of X, then X is said
to be uniformly convex with respect to V, if for every e > 0, there
exists 8 = 8(e) > 0 such that u - v E V, Ilull = Ilvll = 1, Ilu - vii ~ 8 imply
II Hu + v) II :::; 1 - 8. It is known [4, Proposition 2.2] that X is uniformly
convex with respect to V if and only if (X, V) satisfies (QUC) and we can
take Uo in the line segment connecting u and v in the definition of (QUC).

PROPOSITION 3.6. If V is a closed linear subspace of a Banach space X
and (X, V) satisfies property (QUC), then (X, V, CB(X)) satisfies
property (R2 ).
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Proof Let e > 0 and r > 0 be given. By scaling we may assume, without
loss of generality, that r = 1 and e< 1. Take 0 < 8' < 6/(1 + 6) and let
J1=b(8)~8' as in the definition of property (QUC). Take (j=J1/(1-J1).
Let FECB(X) be such that radv(F)~l and pick UEV such that
r(F; u) < 1 + 6. Then r(F/(1 + (j); u/(1 + (j» < 1. By [4, Proposition 2.4(a)],
Cent v(F) ~ t,b. Therefore, we can pick up v E V such that r(F; v) ~ 1. Then
r(F/(1 + (j); v/(1 + (j» ~ 1- J1 and

for some UoE V with Iluo-u/(1 +(j)11 ~8 by property (QUC). Let
ii = (1+ (j) Uo' Then ii E V, II ii - U II ~ 8( 1+ (j) = 8/(1 - J1) ~ 8/(1 - 8) < 6, and
r(F; ii) ~ 1. I

PROPOSITION 3.7. If X is locally uniformly convex, VE CC(X), and V has
property r.c.p. for K(X), then (X, V, K(X» satisfies property (R2 ).

Proof This is an easy modification of the proof of Proposition 4
of [17]. I

Given a set VE CL(X), recall [15J that the pair (X, V) is said to satisfy
property (P) (called (P1) in [15]) if given e > 0 and r > 0, there exist (j > 0
and a function h: VX V -+ V such that for every e, with 181 < 6, we have
h(X,y)E.8(X;6) and .8(x;r+J)n.8(y;r+e)e.8(h(x,y);r+e). The pair
(X, V) is said to satisfy (P) (called (P2 ) in [15J) if it satisfies (P) with h
continuous. It is shown in [15] that for a Banach space X if (X, V) satisfies
(P), then V satisfies r.c.p. for CB(X). Also if X is uniformly convex Banach
space and V E CC(X), then (X, V) satisfies (P) and, moreover, if (X, V)
satisfies (P), then (loo(T, X), ~b(T, V» satisfies (P) for any topological
space T.

PROPOSITION 3.8. If X is a Banach space, V E CL(X), and the pair (X, V)
satisfies property (P), then (X, V, CB(X» satisfies property (R2 ).

Proof Let 6>0 and r>O be given. Let FE CB(X) be such that radv(F)~r.
Since (X, V) satisfies (Pl, there exists 15 > 0 such that for each u, w in V, there
is an element v E V such that .8(u; r + (5) n .8(w; r + e) e .8(v; r + e) for every
e, with lei < J. Let UE V be such that r(F; u) < r + (j. By [15, Theorem 2]
we can pick up WE Centv(F). Then there is an element v E V such that
llu - vii ~ 6 and Fe .8(u; r + (j) n .8(w; r) e .8(v; r). Therefore,

VE VnSAF) and dist(u; V n SAF» ~ e. I
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The relationship between the properties (R j ), (R2 ), and (R 3 ) is clarified
in the next proposition.

PROPOSITION 3.9. If X is a normed space, V E CL(X), and $7 c CB(X),
then for the triplet (X, V, $7) we have

Proof (Rd = (R 3 ): Suppose (X, V, $7) satisfies (Rd. Let s > 0 be given
and let b be any number such that O<b<s. Let FE$7 and r):radv(F).
Let u E V be such that reF; u) < r + b, By Theorem 2.2, SAF) n V 1= ¢.
Hence by (R j ), V n B(u; b) n Sr(F) 1= ¢. Therefore dist(u; Sr(F) n V):::;; b < e,
and this shows that (X, V, $7) satisfies (R 2 ).

(R 3 ) = (R2 ): This is obvious. I
Remarks 3.10. (i) If X = lj and V = X, then by Proposition 3.5, the

triplet (X, V, CB(X)) satisfies property (R z); but it is known [4, Corollary
2.7J that (X, V) does not satisfy property (Que).

(ii) Let X be the M-space {f E ~[O, 1J :f(1/2n) = (lin) f( 1/{2n -1),
n = 1, 2, ... } and V = X Then X is a Lindenstrauss space and by
Proposition 2.3, (X, V, K(X)) satisfies property (Rd; but it is known from
[4, Example 4.7J that (X, V) does not satisfy (QUc).

PROPOSITION 3.11. Iffor each VEY, (X, V, $7) satisfies property (Rd,
then (X, Y, $7) satisfies property (R 4 ).

Proof Let s > 0 be given. From the proof of (R j ) = (R 3 ) in the
previous proposition, it is clear that for any b, 0 < b < £, for every
VEY, FE$7, and r):radv(F), if UE V is such that r(F;u)<r+b, then
dist(u; Sr(F) n V) < £. Thus (X, Y, $7) satisfies (R4 )· I

PROPOSITION 3.12. If X is a uniformly convex Banach space, then the
triplet (X, CC(X), CB(X)) satisfies property (R4 ).

Proof Let £>0 and r>O be given. Let VECC(X) and FECB(X) be
such that radv(F):::;;r. By [15, Proposition IJ, there exists b>O such that
for every x, y E X and every 0 with 101 < b, we have

(*) B(x;r+t5)nB(y;r+O)cB(l/Je(x, y);r+O),

where

if Ilx-YII:::;;e
if Ilx-yll>s.



RESTRICTED SET CENTERS 181

Now let u E V be such that r(F; u) < r + <5 and pick up v ECent v(F).
Then Fe B(u;r+<5) n B(v;r)cB(t/JB(u,v);r). Since t/JB(U,V)EV and
Ilu-t/JB(u, v)11 :;::;;c, we conclude that dist(u, SAF)n V):;::;;c. I

PROPOSITION 3.13. If T is a topological space, U is a uniformly convex
Banach space, X = loo(T, U), and Y:= {V: V is a closed convex
loo(T, [0, l])-submodule of loo(T, U)}, then (X, "f'~, CB(X)) satisfies
property (R4 ).

Proof Let c > 0, r >°be given and let <5 >°be such that (*) holds for
all x, y E U. Let V EY and FE CB(X) be such that radv(F):;::;; r. Then for
f, gin loo(T, U), B(f;r+<5)nB(g,r+e)cB(hAf, g);r+e) for every e
with lei <6, where hAf, g)(t)=t/JB(f(t), g(t)), with t/JB as in the previous
proposition. Let f E V be such that r(F; f) < r + 6. By [21, Corollary 2.3],
we can pick up gECentv(F). Then FcB(f;r+<5)nB(g;r)c
B(hB(f, g); r). Since V is a convex loo(T, [0, 1J)-submodule, hB(f, g)E V
and Ilf - hB(f, g)11 :;::;; c. Therefore, dist(f; SAF) n V):;::;; c. I

COROLLARY 3.14. With T, U, and X as in the previous proposition,
if Y:= {V: V is a closed CCb(T, :%)-submodule of CCb(T, U)}, then
(X, Y, CB(X)) satisfies property (R4 ).

4. CONTINUITY OF Cent v(' )-MAP

As in the previous section, let X be a normed space and let the families
Y c CL(X) and % c CB(X) be given.

THEOREM 4.1. Let VEY and suppose (X, V, %) satisfies property (R 2 ).

Then the Cent v-map: F -4 Cent v(F) of % equipped with T H into CL( V) is
u.H.s.c.

Proof Since (X, V, %) satisfies property (R 2 ) => (V, %) satisfies
property (PI) of [17J, this follows readily from [17, Theorem 5]. I

THEOREM 4.2. Let V E Y and suppose (X, V, %) satisfies property (R 3 ).

Then the Cent v-map:F-4Cent v(F) of % equipped with T H into CL(V) is
uniformly H-continuous.

Proof Let c > ° be given and select 6> 0 as in Property (R 3 ).

Since (X, V, %) satisfies property (R 3 ) => (V, %) satisfies property (P 2 )

in [17], it follows exactly as in the proofs of Theorems 5 and 6 of
[17J, that for every 61 , 0<6 1 <6, F,GE% and H(F,G)<1JJ!2,
imply h{Cent v(G), Centv(F)):;::;; c and h(Cen-t v(F), Cent v( G)):;::;; c, i.e.,
H(Centv(F), Cent v(G)):;::;; c. I



182 PAl AND NOWROJI

Remarks 4.3. (i) If V E CC(X) and the triplet (X, V, CB(X)) satisfies
property (R3 ), then the pair (X, V) satisfies property (QUC). This follows
immediately from [6, Theorem in 6.1].

(ii) By Remark 3.10(i), the triplet (II, II' CB(ld) satisfies (R2) but
not (R 3 ).

(iii) If the pair (X, V) satisfies property (P), then Cent v-map:
F --+ Centv(F) is H-continuous. This follows from [15, Theorem 3],
Proposition 3.8 and Theorem 4.1.

THEOREM 4.4. Let V E 1/' and suppose (X, V, ff) satisfies property (R I ).

Then the Cent v-map: F --+ Centv(F) of ff equipped with 7: H into CL(V) is
Lipschitz H-continuous. In fact

H(Centv(F), Centv(G)) ~ 2H(F, G)

for all F, G in ff and the constant 2 is, in general, the best constant.

Proof By Proposition 3.9, (X, V, ff) satisfies (R I ) => (X, V, ff) satisfies
(R3 ). From the proof of Proposition 3.9, it is clear that given s > 0, any
number b, 0< b < S, works in the definition of (R 3 ), when (X, V, ff)
satisfies (Rd. From the proof of the preceding theorem, it follows that F,
Gin ff and H(F,G)<s/2 imply H(Centv(F),Centv(G))~s. Therefore,
H(Centv(F), Centv(G)) ~ 2H(F, G), for all F, G in ff. To show that this
inequality is sharp, let X = £!i3 equipped with the box norm, let V be the
one dimensional space spanned by (1, 1,0), and let ff be the singletons in
X. It is easy to see that (X, V, ff) satisfies (Rd. Let F= {(O, 0, 3)} and
G={(I,-1,2)}. It is easily seen that Centv(F)={(A,A,0):IAI~3},

Cent v(G) = {(A, A, 0) : IAI ~ I}, H(F, G) = 1 and H(Cent v (F), Cent v (G)) = 2,
which shows that 2 is the best constant. I

THEOREM 4.5. If the triplet (X,1/', ff) satisfies property (R4 ), then the
family ofset-valued maps {Cent v( .): V E 1/'} is uniformly equi-H-continuous
on ff equipped with 7:H'

Proof Let s >° be given and let b >°be as in the definition of
Property (R4 ). It follows exactly as in the proof of Theorem 4.2 that for every
VE1/', F, GEff and H(F, G)<b/2 imply H(Centv(F), Centv(G))~s. I

THEOREM 4.6. If the triplet (X,1/', ff) satisfies property (R4 ), then
the family of set-valued maps {Cent v ('): VE1/'} is equi-u.H.s.c. on ff
equipped with 7: H: given Fa E ff and s > 0, there exists 15 > 0 such
that h(Centv(F),Centv(Fo))<s, for every VE1/', whenever FEff and
H(F, Fa) < 15.
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Proof This follows exactly on the same lines as the proof of Theorem
4.1 using the definition of Property (R4 ). I

In conjunction with Proposition 3.10, Theorem 2.2, and the previous
propositions and corollaries giving examples satisfying property (R 1) we
obtain:

COROLLARY 4.7. Each V E 11 satisfies r.c.p. for :F and the family
{Cent v ('): VE1I} is equi-Lipschitz H-continuous on:F equipped with r H ,

with Lipschitz constant 2, in each of the following cases:

(1) X is a Lindenstrauss space, "r = family of all M-ideals in X, and
:F=K(X);

(2) T is a compact Hausdorff space, U a Lindenstrauss space,
X = YJ'( T, U), "f/' = the family of all W-S subspaces in X, and :F = K( X);

(3) T is a compact Hausdorff space, X = YJ'( T, 9t'), "f/' = the family of
all closed subalgebras in X, and :F = K(X);

(4) T is a compact Hausdorff space, U a Lindenstrauss space,
X = YJ'(T, U),r = {VE : E a closed subset of T}, where V E:= {g E YJ'(T, U) :
gIE=8} and :F=K(X);

(5) T is a paracompact Hausdorff space, U a Lindenstrauss space,
X = loo(T, U), 11 = {YJ'b(T, M) : M is an M-ideal in U}, and :F = K(X);

(6) T is an arbitrary set, X = loo(T, 9t'), 11 = {V: V is a closed linear
subspace of X satisfying the condition in Proposition 2.9}, and :F = CB(X);

(7) T is a compact Hausdorff space, X = YJ'(T, 9t'), "f/' = the family of
all closed subalgebras of X containing nonzero constants, and :F = CB(X).

Some of the cases in the preceding corollary are improvements of some
of the known results: (1) improves Proposition 3 and Corollary 7(v) of
[17J; (2) improves [7, Corollary 3.19] and [25, Theorem 2.1]; (3) and
(7) are improvements of [25, Corollary 2.3] and partial improvements of
[24, Theorem 1]; (6) improves [20, Example 5].

5. RESTRICTED CENTER SELECTION

Let T be a topological space, let U be a Banach space, and let
X = loo(T, U). Suppose a set VE CL(U) and a family:F c CB(X) are given.
By an abuse of notation, we continue to denote by YJ'b( T, V), the closed
subset {j E YJ'b( T, U) : f( T) c V} of lao (T, U), which is convex if V is
convex. In this section, we mainly address the following questions:

(1) When does YJ'b( T, V) satisfy r.c.p. for ifF?
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(2) When does ~b(T, V) have a continuous restricted center selection
on IF?

In case IF = K(X), answers to both these questions are provided in the next
theorem.

THEOREM 5.1. Suppose V admits a continuous restricted center selection
on K( U). Then ~b( T, V) satisfies r.c.p. for K(X), where X = ~b( T, U).
Moreover, if either

(i) T is compact Hausdorff

or

(ii) V has a continuous restricted center selection on K( U) which is
uniformly continuous on the sets {A E K( U) : rad v(A) ~ r} equipped with,H

for each r > 0,

then ~b(T, V) has a continuous restricted center selection on K(X).

Proof Let FEK(X) and let A ~ C(A)ECentv(A) be a continuous
restricted center selection for V on K( U). By Lemma 1.1 and hypothesis,
t ~ C(F(t)) is H-continuous. Define the function C: K(X) ~ ~(T, V) by
C(F)( t) = C(F( t)) for FE K( X) and t E T. It is easily verified that for each
tE T, radv(F(t))~rad~b(T,v)(F). Therefore IIC(F)(t)11 ~ IJlII +rad~b(T,V)(F)
for any f E F and each t E T, whence we conclude that C maps K(X) into
~b(T, V). We assert that C(F) E Cent~b(T, V)(F) for each FE K(X). Indeed,
we have

rad~b(T, v)(F) ~ sup IIC(F) - fll = sup sup IIC(F)(t) - f(t)11
fEF fEFIET

= sup r(F(t); C(F)(t)) = sup r(F(t); C(F(t)))
IE T IE T

= sup rad v(F(t)) ~ rad~b(T,v)(F).
IE T

Therefore r(F; C(F)) = rad~b(T,v)(F), and this proves that ~b(T, V) satisfies
r.c.p. for K(X). We assert that F~ C(F) is a continuous map of K(X)
equipped with 'H into ~b(T, V) under either of the two assumptions (i) or
(ii). First suppose (i) is satisfied and, assume the contrary, that F~ C(F)
is not continuous. Then there are a net <F;.> in K(X), 'jf""convergent to Fo
in K(X), and a number e> 0, such that

(*) II C(F;J - C(Fo)JJ ~ e for all A.

Pick t;. E Tfor each Asuch that IIC(FJ- C(Fo)II = IIC(FJ(tJ- C(Fo)(tJII =
IIC(FA(tA))- C(Fo(tJ)II. Since T is compact, the net <t;,> has a subnet
<tJl >convergent to toE T.
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Since H(FjJ.(tjJ.)' Fo(to)) ::::; H(FjJ.(tjJ.)' Fo(tjJ.)) + H(Fo(tjJ.)' Fo(1o)) ::::;
H(F1" Fo)+H(Fo(tjJ.)' Fo(to)), by Lemma 1.1, H-limjJ. FjJ.(tjJ.) =Fo(to),
which contradicts (*) and establishes continuity of the map F --+ C(F). Next
suppose (ii) is satisfied. Fix FE K(X). Let E > 0 be given and let d:=
{A E K( U) : H(A, F(t)) < E for some t E T}. Since Irad v(A) - radv(F(t))1 ::::;
H(A, F(t)), we have

de {A E K( U) : radv(A) < rad'Cb(Ty/F) + c}

and by hypothesis, there is a 15 > ° such that for A, B in d with
H(A, B) < 15, we have IIC(A) - C(B)II < E. We may assume 0<15 < B. Now
let GEK(X) be such that H(F,G)<c5. Then H(F(t),G(t))<c5 and since
F(t), G(t) E d, we have IIC(F(t)) - C(G(t))\\ < B for each t E T. Therefore
II C(F) - C(G) II < B and we conclude that C is continuous at F. I

The preceding theorem extends [13, Theorem 2.1] as well as [20,
Theorem 1]. In conjunction with [4, Proposition 2.4(a)], Remark 4.3(iii),
and Theorem 4.1 we obtain:

COROLLARY 5.2. If T is an arbitrary topological space, then Cflb(T, V) has
r.c.p.for K(X), where X = Cflb(T, U) and, moreover, Cflb(T, V) has a continuous
restricted center selection on K(X) in case T is compact Hausdorff, in each
of the following cases:

(1) V is a closed linear subspace of U and the pair (U, V) satisfies
property (QUC);

(2) VE CL(U) and the pair (U, V) satisfies property (P);

(3) V E CL( U) and the triplet (U, V, K( U)) satisfies property (R d.

We remark that in the previous corollary (1) improves [20, Corollary
4(g)] and (2) is a partial improvement of [15, Corollary 5].

In conjunction with Proposition 2.4, Corollary 2.7, and Proposition 3.9
the preceding theorem gives:

COROLLARY 5.3. Let S, T be compact Hausdorff spaces, U a Linden
strauss space and let X = Cfl(S x T, U); then Cfl(S, V) has a continuous
restricted centre selection on K(X) in each of the following cases:

(1) V is a W-S subspace of Cfl(T, U);

(2) V = {g E Cfl(T, U) : g IE = 8,for a given closed E c T}.

Proof We need only identify the Banach spaces Cfl(S, Cfl(T, U)), and
Cfl(S x T, U). I

The following Corollary which is obtained using Proposition 2.3,
Proposition 2.8, and Proposition 3.9 along with the. preceding theorem is
also of independent interest.
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COROLLARY 5.4. If T is an arbitrary topological space, U is a
Lindenstrauss space, and V is an M-ideal in U, then '6'b( T, V) has r.c.p.
for K(X), where X = '6'b(T, U), and in case T is paracompact Hausdorff,
'6'b( T, V) has a continuous restricted center selection on K( Y), where
Y = loo(T, U). In particular, '6'b(T, U) admits centers for K(X) if T is
arbitrary, and '6'b(T, U) has a continuous center selection on K( Y) if T is
paracompact Hausdorff

Theorem 5.2 in conjunction with [6, Theorem in 4.1 and Theorem 6.1]
also yields:

COROLLARY 5.5. If T is an arbitrary topological space, U is an uniformly
convex Banach space and V E CC( U), then '6'b( T, V) has a continuous
restricted center selection on K(X), where X = '6'b(T, U).

We remark that the preceding corollary is also a consequence of Remark
4.3(iii) and [15, Theorem 3].

THEOREM 5.6. Let T be a paracompact Hausdorff space, U be a Banach
space, and X = '6'b( T, U). Let V E CC( U) and :Ii' c CB(X) be such that for
each FE:Ii', the set-valued map t~F(t) of T into CB(U) is u.H.s.c. If the
triplet (U, V, CB(U)) satisfies property (R2 ), then '6'b(T, V) has r.c.p.for :Ii'.

Proof Let FE:Ii' be given. For each t E T, define

<l>(t):= {UE V: r(F(t); u)~rad'ii'b(T,v)(F)}.

Since radv(F(t))~rad'ii'b(T,v)(F), by property (R2 ), <l>(t)=I=</J; also it is
closed and convex. Thus <l> maps T into CC( U). We claim that <l> is l.s.c.
To this end, let to E T and suppose <l>(to) n B(uo; rx) =1= cP. Pick up v E <l>(to)
such that Ilv - uoll < [3 < rx. Let 8 = rx - [3, r = rad'ii'b(T, v)(F) and choose J > 0
as in property (R2 ). Since t ~ F(t) is u.H.s.c. at to, there exists a
neighbourhood N to of to such that for each t E N to ' h(F(t), F(to)) < J. Since
r(F(t);v)~r(F(to);v)+h(F(t),F(to)), we have r(F(t);v)<r+J, for each
tENto ' Again since radv(F(t))~r, by property (R 2 ), there exists WtE V for
each tENto ' such that r(F(t); wt)~r and IIwt -vll <8. Since IIwt-uoll <
8 + [3 = (1., we have Wt E <l>(t) n B(uo; rx). Thus <l>(t) n B(uo; (1.) =1= <l> for each
t E N to ' and this proves that <l> is l.s.c. By Michael's selection theorem
[18], <l> has a continuous selection h. Since r(F(t);h(t))~r, we have
Ilh(t)11 ~ Ilflloo +r for each tE T for any fEF. Hence hE'6'b(T, V). Since
r(F;h)=suPtETr(F(t);h(t))=suptETr(F(t);h(t)), we have r(F;h)=r and
hE Cent'ii'b(T,v)(F). Thus '6'b(T, V) has r.c.p. for:li'. I

Remark 5.7. In view of Lemma 1.1, the preceding theorem holds for
:Ii' = K(X). The preceding theorem in conjunction with Proposition 3.4,
Proposition 3.5, and Proposition 3.7 yields:
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COROLLARY 5.8. Let T be a paracompact Hausdorff space, X = ~b( T, U),
and:F c CB(X) be as in Theorem 5.6. Then ~b(T, V) has r.c.p.for:F in each
of the following cases:

(1) V is a boundedly compact and convex subset of a Banach space U;

(2) U = II and V is a w*-closed convex subset of /1;

(3) U is locally uniformly convex, :F = K(X), V E CC( U), and V
satisfies r.c.p. for K( U).

THEOREM 5.9. Let T be a paracompact Hausdorff space, U be a Banach
space, and X = ~b(T, U). Let V E CC(X) and J7 c CB(X) be such that

(1) fE~b(T, U),f(t)E V(t)for each tE T imply fE V;

(2) for each FE:F, the set-valued map t ---+ F(t) of T into CB( U) is
u.H.s.c.;

(3) the triplet (U, 1/, CB( U)) satisfies property (R 4 ), where
1/ := {V(t): t E T}.

Then V has r.cp. for :F.

Proof Let FE:F be given. For each t E T, define

cP(t) := {UE V(t) : r(F(t); u) ~ radv(F)}.

Since radv(t)(F(t))~radv(F), by (R4 ), cP(t)¥if;; also it is closed and
convex. Thus cP maps T into CC(U). Using property (R4) in place of
(R2 ) exactly as in the proof of Theorem 5.6, we conclude that cP is l.s.c.
Therefore, by Michael's selection theorem [18], cP has a continuous
selection h. Clearly h E ~b(T, U) and by (1) hE Centv(F). Thus V has r.c.p,
for:F. I

COROLLARY 5.10. Let T be a compact Hausdorff space, U be a Banach
space, and let X = ~(T, U). If V is a closed ~(T, :%)-submodule of X and the
triplet (U, 1/, K( U)) satisfies property (R4 ), where 1/ = {V( t): t E T}, then V
has r.c.p. for K(X).

Proof By [19, Approximation Lemma 3.0], (1) in Theorem 5.9 is
satisfied. Also by Lemma 1.1, (2) is fulfilled for each FE K(X) and the
conclusion follows from the last theorem. I

Last, from Corollary 4.7 (1) and (6), Corollary 3.14, and the preceding
Corollary, we obtain

COROLLARY 5.11. Let T be a compact Hausdorff space, X=~(T, U),
and V be a closed '?5(T, :%)-submodule of X. Then V has r.c.p. for K(X) in
each of the following cases:
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(1) U is a Lindenstrauss space and V( t) is an M-ideal in U for each
tE T;

(2) S is an arbitrary set, U = loo(S, ~), and Vet) is a linear subspace
of U satisfying the condition in Proposition 2.9 for each t E T;

(3) S is a topological space, E is a uniformly convex Banach space,
U = loo(S, E), and Vet) is a C(lb(S, :ff)-submodule of C(lb(S, E) for each t E T.
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